Another generalization of Euler’s arithmetic function and Menon’s identity
نویسندگان
چکیده
We define the $k$-dimensional generalized Euler function $\varphi_k(n)$ as number of ordered $k$-tuples $(a_1,\ldots,a_k)\in {\Bbb N}^k$ such that $1\le a_1,\ldots,a_k\le n$ and both product $a_1\cdots a_k$ sum $a_1+\cdots +a_k$ are prime to $n$. investigate some properties $\varphi_k(n)$, obtain a corresponding Menon-type identity.
منابع مشابه
the crisis of identity in jhumpa lahiris fiction: interpreter of maladies and the namesake
شکل گیری هویت(identity) مقوله مهمی در ادبیات پراکنده مردم(diasporan literature) می باشد. آثار جومپا لاهیری(jhumpa lahiri) ، نویسنده هندی آمریکایی، در سالهای اخیر تحسین منتقدین را به خود معطوف کرده است. وی در این آثار زندگی مهاجران و تلاش آنان برای پیدا کردن جایگاهشان در یک فرهنگ بیگانه را به تصویر کشیده است. این تجربه همواره با احساساتی نظیر دلتنگی برای گذشته، بیگانگی و دوری همراه است. با این ح...
15 صفحه اولA Graphic Generalization of Arithmetic
In this paper, we extend the classical arithmetic defined over the set of natural numbers N, to a set containing all finite directed connected multigraphs having a pair of distinct distinguished vertices. Specifically, we introduce a model F on the set of such graphs, and provide an interpretation of the language of arithmetic L = {0, 1,6,+,×} inside F . The resulting model exhibits the propert...
متن کاملGeneralized statistics: yet another generalization
We provide a unifying axiomatics for Rényi’s entropy and non–extensive entropy of Tsallis. It is shown that the resulting entropy coincides with Csiszár’s measure of directed divergence known from communication theory.
متن کاملArithmetic Circuits and Identity Testing
We study the problem of polynomial identity testing (PIT) in arithmetic circuits. is is a fundamental problem in computational algebra and has been very well studied in the past few decades. Despite many eorts, a deterministic polynomial time algorithm is known only for restricted circuits of depth 3. A recent result of Agrawal and Vinay show that PIT for depth 4 circuit is almost as hard as t...
متن کاملArithmetic Equivalence for Function Fields, the Goss Zeta Function and a Generalization
A theorem of Tate and Turner says that global function fields have the same zeta function if and only if the Jacobians of the corresponding curves are isogenous. In this note, we investigate what happens if we replace the usual (characteristic zero) zeta function by the positive characteristic zeta function introduced by Goss. We prove that for function fields whose characteristic exceeds their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ramanujan Journal
سال: 2021
ISSN: ['1572-9303', '1382-4090']
DOI: https://doi.org/10.1007/s11139-020-00353-z